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Abstract
We examine shape invariant potentials (excluding those that are obtained by
scaling) in supersymmetric quantum mechanics from the standpoint of periodic
orbit theory. An exact trace formula for the quantum spectra of such potentials
is derived. On the basis of this result, and Barclay’s functional relationship for
such potentials, we present a new derivation of the result that the lowest order
SWKB quantisation rule is exact.

PACS numbers: 03.65.Sq, 12.60.Jv

In non-relativistic quantum mechanics certain potentials are amenable to exact analytic
solution. For a subset of these soluble potentials, the energy spectrum may be expressed
explicitly as an algebraic function of a single quantum number. Such potentials occur either
in one space dimension, or are central potentials in higher dimensions. For the latter, an
effective potential in the radial variable can be defined for each partial wave. Some examples
of such potentials are Coulomb, harmonic oscillator, Morse, Rosen–Morse, etc [1]. These
potentials also have the property that the lowest order WKB quantization rule, together with
the appropriate Maslov index (that may change from potential to potential [2]), leads to exact
results. For central potentials, the Langer prescription [3] for the centrifugal barrier, together
with half-integer quantization, can also be employed [4].

In supersymmetric (SUSY) quantum mechanics, these exactly solvable potentials are
found to be translationally shape invariant [5]. Combining SUSY and WKB, Comtet et al [6]
found that the lowest order SWKB calculation needs neither the Maslov index nor the Langer
correction to yield the exact result. The purpose of this paper is to understand this result from
the point of view of the periodic orbit theory (POT) [7], rather than the higher order WKB
corrections [8]. Regarding the latter, we should point out a largely overlooked paper by Barclay
[4], in which he showed that the higher order WKB terms converge in these potentials to yield
an energy-independent correction, which may be absorbed into the Maslov index. For SWKB,
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all the higher order terms vanish. Although we do not make the WKB expansion, we arrive at
the same result in a novel application of POT.

We first set the notation by reviewing the relevant equations of SUSY QM. Consider a
potential V (x; a1) of a single variable x, and a set of parameters denoted by a1. One defines a
‘super potential’

W(x; a1) = − h̄√
2m

φ′
0(x)

φ0(x)
,

where φ0(x) is the ground state solution of the Schrödinger equation at energy E0 for the
potential V (x, a1), and a prime denotes the spatial derivative. Let us define

V1(x; a1) = (V (x; a1) − E0), (1)

so that the ground state energy of the Hamiltonian

H1 = − h̄2

2m

d2

dx2
+ V1(x; a1)

lies at zero energy, i.e., E
(1)
0 = 0. Then it is easy to show that

V1(x; a1) = W 2(x; a1) − h̄√
2m

W ′(x; a1).

The SUSY partner Hamiltonian H2 has the potential V2(x; a1), and has an energy spectrum
identical to that of H1, except for the absence of the zero-energy state. The ground state of
H2, denoted by E

(2)
0 coincides with the first excited state E

(1)
1 of H1, and so on. The partner

potential V2(x; a1) is

V2(x; a1) = W 2(x; a1) +
h̄√
2m

W ′(x; a1).

Shape invariance in the partner potentials is defined by the relation

V2(x; a1) = V1(x; a2) + R(a1), (2)

where the new parameters a2 are some function of a1, and the remainder R(a1) is independent
of the variable x. We restrict our consideration of shape invariance to those cases where a2 and
a1 are related by translation, a2 = a1 + α. It is then straightforward to show, by constructing
a hierarchy of Hamiltonians, that the complete eigenvalue spectrum of H1 is given by [1]

E(1)
n =

n∑
k=1

R(ak), n � 1, (3)

E
(1)
0 = 0. (4)

The rhs of the above may be expressed as a monotonic function f1(n) of the quantum number
n, so that

E(1)
n = f1(n); f1(0) = 0. (5)

For the shape invariant potentials we consider here, f1(n) is an algebraic function. Using this
property, we proceed to obtain an exact expression for the quantum density of states of H1 in
the spirit of periodic orbit theory. This entails a division of the density of states into a smooth
and an oscillating part as a function of a continuous classical variable E. To this end, we may
write

δ
(
E − E(1)

n

) = δ(E − f1(n)) = δ(n − F1(E))F ′
1(E), (6)
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where the algebraic relation En = f1(n) has been inverted to define

n = F1(E). (7)

Note that we have used the algebraic expression between integer n and En to provide the
relationship for continuous variables in equation (7). The continuous function F1(E) that we
obtain in this way will be shown to satisfy the requirements of POT and classical mechanics
(see equations (14)–(18)). In this sense, our choice of F1(E) using equation (7) is not only
natural, but also necessary.

For the spectrum under consideration, f1(0) = 0 implies the condition

F1(0) = 0. (8)

The quantum density of states g1(E) for the discrete spectrum of H1 is defined as

g1(E) =
∞∑

n=0

d(n)δ
(
E − E(1)

n

)
, (9)

where d(n) is the degeneracy of states at E = En. Writing d(n) = d(F1(E)) ≡ D(E), and
using equation (6), we obtain

g1(E) = D(E)F ′
1(E)

∞∑
n=0

δ(n − F1(E)). (10)

(D(E) = 1 for one-dimensional potentials). We now use the identity
∞∑

n=0

δ(n − x) =
∞∑

k=−∞
e2iπkx, x � 0, (11)

to obtain the desired expression [7, 11]

g1(E) = D(E)F ′
1(E)

[
1 + 2

∞∑
k=1

cos[2πkF1(E)]

]
. (12)

For a given F1(E), this is an exact expression for the quantum density of states g1(E). It is
in the form of a trace formula in POT [7, 10] when F1(E) (to within a dimensionless additive
constant η) is identified with the action S1(E) of the primitive classical periodic orbit of the
potential V1(x):

S1(E)

h
= F1(E) + η, (13)

S1(E) = 2
√

2m

∫ x2

x1

√
E − V1 dx. (14)

In the above, x1 and x2 are the classical turning points at which E = V1(x) (for economy in
notation, we write V1(x, a1) = V1(x)). The (h-independent constant) η may be determined
by using equation (13), and applying the condition given by equation (8) for E = 0. We then
obtain

η = S1(0)

h
. (15)

We may prove equation (13) by noting that the (smooth) Thomas–Fermi density of states,
given by the first term on the rhs of equation (12), is the Laplace inverse of the classical
canonical partition function [12] of the Hamiltonian Hcl

1 (x, p) = p2/2m + V1(x):

F ′
1(E) = L−1

E Zcl
1 (β) = 1

2π i

∫ c+i∞

c−i∞
Zcl

1 (β) eβE dβ. (16)
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Since

Zcl
1 (β) = 1

h

∫
exp[−βHcl

1 (x, p)] dx dp

= 1

2πh̄

√
2mπ

β

∫ ∞

−∞
exp[−βV1(x)] dx, (17)

it follows from (16) that

F ′
1(E) =

√
2m

2πh̄

∫ x2

x1

dx√
[E − V1(x)]

. (18)

From this, equation (13) follows on integration over energy. Note that F ′
1(E)/h is the period

of the classical periodic orbit and is unique, whereas F1(E) involves a constant of integration,
η. Using equation (7) together with (13), (14), we obtain the important result that the lowest
order WKB quantization rule is exact for V1 :

S1(E) =
∮

p(x) dx = (n + η)h, (19)

where p(x) = √
2m[E − V1(x)]. We also see that the constant η is the so-called Maslov

index which may vary from one potential to another.
The Maslov index η may be eliminated from the quantisation rule by employing the

superpotential formalism, and the result of Barclay and Maxwell [13]. They made the
important observation that the shape invariant class of potentials under consideration obey
one or other of the following equations:
Class 1

h̄√
2m

dW

dx
= A + BW 2(x) + CW(x), (20)

or Class 2
h̄√
2m

dW

dx
= A + BW 2(x) + CW(x)

√
(A + BW 2), (21)

where A, B and C are constants. Using these equations, we now show that S1(E), as defined
by equation (14), obeys the relation (x1s , x2s are the turning points in SWKB)

S1(E) = 2
√

2m

∫ x2s

x1s

√
E − W 2 dx + hη. (22)

To this end, note that the action S1 can be expressed as an inverse Laplace transform

S1(E) =
√

2mπL−1
E

∫ ∞

−∞

e−β[W 2−h̄W ′/
√

2m]

β3/2
dx. (23)

At this point, for simplicity of notation, let us temporarily put h̄/
√

2m = γ . Expanding the
exponential in powers of W ′, we have

S1(E) =
√

2mπL−1
E

∫ ∞

−∞

e−βW 2

β3/2

(
1 +

∞∑
k=0

(γβW ′)k+1

(k + 1)!

)
dx. (24)

= 2
√

2m

∫ x2s

x1s

√
E − W 2 dx +

∞∑
k=0

h̄

(k + 1)!

∂k

∂Ek

∫ √
E

−√
E

(γW ′)k√
E − W 2

dW. (25)

Note that now the limits in x are replaced by the condition W 2(x) = E. The integral for k = 0
may be done immediately, yielding π . To evaluate the integrals for integer k � 1, we assume
that γW ′ obeys Barclay’s equation (20) (class 1) or (21) (class 2).



Letter to the Editor L187

For class 1, we require integrals of the type

Ik =
∫ √

E

−√
E

(A + BW 2 + CW)k√
E − W 2

dW. (26)

On expanding the numerator, terms with odd powers of W vanish on integration. One now
sees that only the piece of Ik involving the highest power of W 2 survives the differentiation in
equation (25). Consider the integral with W 2k . With the substitution W = √

E sin θ∫ √
E

−√
E

W 2k

√
E − W 2

dW = Ek

∫ π/2

−π/2
sin2kθ dθ (27)

= Ek (2k − 1)!!

(2k)!!
π. (28)

Accordingly, equation (25) reduces to

S1(E) = 2
√

2m

∫ x2s

x1s

√
E − W 2 dx + h̄π

(
1 +

∞∑
k=1

Bk(2k − 1)!!

(k + 1)(2k)!!

)
. (29)

By construction, W 2(x) has coincident turning points at E = 0, so the first term on the RHS
above vanishes at this energy. Comparing with equation (15), we deduce that

η = 1

2

(
1 +

∞∑
k=1

Bk(2k − 1)!!

(k + 1)(2k)!!

)

= 1

B
[1 − √

1 − B]. (30)

Note, from equation (20), that B is independent of Planck’s constant h. Comparing now with
equation (13), we deduce our main result

2πh̄F1(E) =
√

2m

∮ √
E − W 2 dx. (31)

Using equation (7) we get as the exact result the SWKB expression∮ √
2m(E − W 2) dx = 2πh̄n, n = 0, 1, 2, 3, . . . (32)

which yields the quantum spectrum of V1(x).
A similar derivation may be carried through for class 2 superpotentials obeying

equation (21). The starting point, as before, is equation (25), and the integral to be considered
is now of the form

Jk =
∫ √

E

−√
E

(A + BW 2)k
(
1 + CW√

A+BW 2

)k

√
E − W 2

dW. (33)

The second bracketed term in the numerator on the RHS may be expanded binomially, and
the terms in odd powers of W vanish on integration. We then have

Jk =
nmax∑
n=0

k!

(k − 2n)!(2n)!

∫ √
E

−√
E

(A + BW 2)k−n(CW)2n

√
E − W 2

dW, (34)

where nmax = k/2 for k even, and (k−1)/2 for k odd. The highest power of W in the numerator
is again W 2k and again only terms with this highest power (with coefficient Bk−nC2n) will
survive when Jk is differentiated k-times. Accordingly, equation (25) reduces to

S1(E) = 2
√

2m

∫ x2s

x1s

√
E − W 2 dx + h̄π

(
1 +

∞∑
k=1

(2k − 1)!!

(k + 1)(2k)!!

nmax∑
n=0

k!Bk−nC2n

(k − 2n)!(2n)!

)
. (35)

The main results given earlier by equation (31), (32) remain valid.
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Figure 1. Numerical evaluation of the trace formula (12) for the infinite square well where
F1(E) = (1 + E/E0)

1/2 − 1. In the figure, E is plotted in units of E0. To ensure uniform
lineshapes, correct degeneracies, and strict numerical convergence, we have employed the usual
prescription used in numerical semiclassics (see, for example, section 5.5 of [7]) which is to
convolve the trace formula with a Gaussian of width σ . For this particular calculation, we have
truncated the sum at kmax = 104 while prescribing σ = 0.05.

The summation in equation (35) can be done similarly to that in equation (30). The inner
summation provides the mean of (B ± C

√
B)k . Then we find

η = 1

2z+
[1 −

√
1 − z+] +

1

2z−
[1 −

√
1 − z−]

where

z± = B ± C
√

B. (36)

These results (30), (36) are a simple demonstration of the relation between WKB and SWKB,
which Barclay [4] approached in a different manner.

It may now be instructive to illustrate our results with a few examples:
(1) Infinite square well. In this example, W(x) = −h̄π/(

√
2mL) cot(πx/L). It belongs to

class 1 with A = h̄2π2/(2mL2) = E0, B = 1 and C = 0. The quantum spectrum of V1 is
given by f (n) = n(n + 2)E0, with n = 0, 1, 2, . . . . Then F1(E) = (1 + E/E0)

1/2 − 1. A
careful numerical evaluation of the trace formula (12) with this F1(E) reproduces the quantum
spectrum (see figure 1). It is also easy to check equation (31) by evaluating the action integral
of W 2(x) analytically, and equation (22) using equation (30) (η = 1).
(2) Three-dimensional harmonic oscillator in the lth partial wave. In this example W(r) =√

2mωr/2 − h̄/(
√

2m)(l + 1)/r . It belongs to class 2 with A = h̄ω, B = 1/(2l + 2) and
C = −√

B. The quantum spectrum, measured from the lowest state in a fixed partial wave is
f (n) = 2nh̄ω, so F(E) = E/(2h̄ω). Again, equation (31) may be checked explicitly.

To verify equation (22), we find from equation (36) that

η = 1
2 + 1

2

[
� + 1

2 − √
�(� + 1)

]
(37)

in this example. The first 1/2 represents the usual half-integer quantisation in LOWKB,
while the terms in square brackets arise from the sum of order h̄2 and higher corrections. As
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discussed in detail by Seetharaman [14] and Barclay [4] they can be removed by adopting the
Langer prescription. We have also checked other examples analytically.

In conclusion, we have given a new proof that lowest order SWKB quantisation is exact,
starting from periodic orbit theory, rather than by examining the higher order WKB terms.
The key ingredients have been an invertible algebraic expression for the energy spectrum, and
Barclay and Maxwell’s [4, 13] insight about shape invariant potentials.
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